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Abstract: This study assesses the vibration characteristics of functionally graded rectangular plates resting on 

Winkler elastic foundation. Integral calculus has been applied to the beam analogy method for the evaluation of the 

non-dimensional frequency parameters of isotropic functionally graded (FG) rectangular plates resting on Winkler 

elastic foundation. The fundamental assumptions of linear, elastic, small-deflection theory of bending for thin plates 

due to Kirchhoff are taken into consideration. Using direct integration, characteristic orthogonal polynomials 

(COPs) shape function for plates clamped on two opposite edges and simply supported on two other opposite edges 

(SCSC) is formulated. The effect of aspect ratios on the natural frequency of the plate is examined. The findings of 

this study show that an increase in aspect ratio results in an increase frequency of the plate.  Adding an elastic 

foundation increases the non-dimensional frequency parameter of the plates. Like plates resting on Winkler 

foundation, an increase in aspect ratio, causes a corresponding increase in frequency for plates not subjected to the 

effect of Winkler elastic foundation. It is also observed that an increase in power law index decreases the frequency 

parameters of the plate. Results are in tandem with those in the literature. 

Keywords: Free vibration, rectangular plate, Winkler foundation, functionally graded plate, analytical solution.  

I.   INTRODUCTION 

As a common structural component, rectangular plates have been widely used in aerospace, military and marine industries 

and other various engineering fields. In the past decades, the problem/analysis of the transverse vibrations of plates has the 

great attention of several researchers as evidenced by the numerous related research papers on the free transverse vibrations 

of rectangular plates. Problems involving rectangular plates fall into three distinct categories: plates with all edges simply 

supported; plates with a pair of opposite edges simply supported; plates which do not fall into any of the above categories. 

Common applications of plates on an elastic foundation include foundations, storage tanks, swimming pools, floor systems 

of buildings and highways, airfield pavements, etc. 

Functionally graded materials (FGMs) are generally ceramic-metal composites in which material properties vary 

continuously in the thickness direction from one surface to the other. The ceramic constituent provides high-temperature 

resistance due to its low thermal conductivity. On the other hand, the ductile metal constituent prevents fracture caused by 

the stresses due to high temperature gradient in a very short span of time. 

Many studies for free vibration analysis of rectangular plates resting on elastic foundation are available in the literature. 

These studies are done by means of both numerical and analytical approaches. A new version of the differential quadrature 

method for assessing the vibration characteristics of rectangular plates resting on elastic foundations carrying any number 

of sprung masses was proposed by Hsu [1]. The first six natural frequencies of plates with various foundation stiffnesses 
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were highlighted. They also analyzed the effect of aspect ratios on the natural frequency of plates on elastic foundation. 

Using the finite cosine integral transform method, Li et al. [2] presented the analytical solutions for rectangular plates on 

the Winkler elastic foundation with four edges free. In the analysis, the classical Kirchhoff rectangular plate was considered. 

Chakraverty and Pradhan [3] investigated the free vibration of functionally graded (FG) rectangular plates subject to 

different sets of boundary conditions within the framework of classical plate theory. The parametric resonance 

characteristics of functionally-graded material (FGM) plates on elastic foundation under biaxial in plane periodic load was 

studied by Ramu and Mohanty [4]. 

Chakraverty and Pradhan [3], Hosseini-Hashemi et al. [5], Kumar et al. [6], and Sayyad and Ghugal [7] have studied in 

detail, the free vibration of functionally graded rectangular plates. The bending solutions of free rectangular thin plates, 

based on the Winkler model, were obtained by a new symplectic superposition method. In a separate study, Bahmyari et al. 

[8] analysed the free vibration of thin plates resting on Pasternak elastic foundation for different foundation parameters, 

various modes of vibration and all possible types of classical boundary conditions using the free Galerkin method. 

Elsewhere, Ketabdari et al. [9] focused on the free vibration analysis of homogeneous and functionally graded skew plates 

resting on variable Winkler-Pasternak elastic foundation. The elastic foundation was assumed to be a combination of 

Winkler and Pasternak elastic support. The natural frequency of simply supported functionally graded plates resting on 

elastic foundation was examined by Gupta et al. [10]. The higher-order shear deformable plate theory of Talha and Singh 

[11] was used to determine the natural frequencies of simply supported functionally graded square plate resting on elastic 

foundation. The three-dimensional vibration of a functionally graded sandwich rectangular plate on an elastic foundation 

with normal boundary conditions was analyzed by Cui et al. [12] using a semi-analytical method based on three-dimensional 

elasticity theory.  

In a separate study, the nonlinear free vibration analysis of functionally graded plates resting on elastic foundation in thermal 

environment was carried out by Parida and Mohanty [13]. They developed a mathematical model based on a higher-order 

shear deformation theory using Green-Lagrange type nonlinearity. In their study, Kumar et al. [6] investigated the free 

vibration behaviour of thin functionally graded rectangular plates by using the dynamic stiffness method (DSM). They 

adopted the Classical plate theory along with the concept of physical neutral surface of the functionally graded plate to 

formulate the dynamic stiffness matrix. Zhao-chun et al. [14] more recently assessed the free vibration characteristics of 

porous functionally graded material (FGM) rectangular plates on a Winkler-Pasternak elastic foundation under the influence 

of temperature based on the classical thin plate theory and Hamilton principle. To the best of the authors’ knowledge, use 

of beam analogy method to investigate the free vibration characteristics of FG rectangular plates resting on the Winkler 

foundation has not yet been investigated. 

This study, therefore, assesses the dynamic behaviour of functionally graded rectangular plates resting on Winkler 

foundation using beam analogy method. 

II.   THEORETICAL BACKGROUND 

The formulation of the exact solution to the governing differential equation of each of the plates studied, development of 

the characteristic orthogonal shape functions and the fundamental natural frequencies of all round clamped plate (CCCC) 

with various aspect ratios are presented. 

Exact Solution to the Governing Differential Equation  

The exact solution to the governing differential equation of the plate has been derived by Ohia et al. [20] as: 

                     𝜔 =  
√𝐴1φ4 + 𝐵1φ2 + 𝐶1

𝑏2
 √

𝐷

𝜌ℎ
+ √𝑘                                                                   (1) 

 

𝐻𝑏𝛽 =   √𝐴1φ4 + 𝐵1φ2 + 𝐶1                                                                                 (2) 

where 

                 𝜔 = fundamental natural frequency 

                 𝐴1, 𝐵1, 𝐶1 =  numerical coefficients 
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  φ =  inverse aspect ratio 

  𝐷 = flexural rigidity of plate 

    = density of plate 

  h = thickness of plate 

  k = reaction coefficient of foundation 

                 𝐻𝑏𝛽 =  Non-dimensional frequency parameter 

Characteristic Orthogonal Polynomials (COPs) 

Let us consider a rectangular plate of dimensions, a along x and b along y, of uniform thickness shown in Figure 1. If the 

deflection pattern of the plate along x is represented by a beam strip qualitatively, the beam function along x is taken as 

F(x). Similarly, the corresponding beam function along y is taken as F(y). 

 

Figure 1: A rectangular plate 

Assuming the plate deflections in the form of a series, the solution for prismatic beam of constant stiffness EI and length 

spanning along x can be written as: 

wx = F(x) = ∑ Xmxm

∞

m=1

                                                                                                            (3) 

and in the y-direction, 

wy =  F(y) = ∑ Ynyn

∞

n=1

                                                                                                                (4) 

Where, 

wx and wy are plate deflections at point (x,y) 

Xm and Yn
 are constant parameters in x and y directions respectively 

x, y are coordinates of points 

m and n are series to infinity limit  

F(x) and F(y) are beam functions along x and y directions respectively 

Bhat [16] developed a systematic method of constructing the shape function of rectangular plates using the characteristic 

orthogonal polynomial by assuming the displacement function as a product of two functions: one which is a pure function 

of x and the other is of y so that, 

w(x, y) = F(x). F(y) = wx. wy                                                                                                  

or 

w(x, y) = ∑ ∑ 𝑋𝑚𝑥𝑚Ynyn

∞

n=1

∞

𝑚=1

                                                                                                 (5) 
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Expressing Equations (3), (4), (5) in the form of non-dimensional parameters,  R and Q , Equation (3) becomes 

𝑤𝑥 = 𝐹(x) = ∑ 𝑋𝑚

∞

𝑚=1

 (𝑎𝑅)𝑚    = ∑ 𝑋𝑚amR𝑚

∞

𝑚=1

                                                                  (6) 

In the same manner, substituting y = bQ into Equation (4), we have: 

𝑤𝑦 = 𝐹(y) = ∑ 𝑌𝑛

∞

𝑛=1

 (𝑏𝑄)𝑛    = ∑ 𝑌𝑛bnQ𝑛

∞

𝑛=1

                                                                          (7) 

Substituting Equations (5) and (6) into Equation (5) we obtain: 

w(x, y) = ∑ ∑ 𝑋𝑚amR𝑚

∞

n=1

∞

𝑚=1

 𝑌𝑛bnQ𝑛                                                                                         (8) 

or 

w(x, y) = ∑ ∑ 𝐴𝑚Rm𝐵𝑛

∞

n=1

∞

𝑚=1

Qn                                                                                                     (9) 

where 

Am and Bn are coefficients that are to be determined from the boundary conditions at the edges of the plate. 

The equation of an orthotropic plate in free vibration is a fourth order differential, the density of the plate being constant. 

Therefore, m and n in Equation (9) must be equal to 4, Onyeyili [17]. Expanding Equations (7), (8) and (9) to 4th order 

power series, we obtain 

𝑤𝑥 = 𝐹(x) = ∑ 𝐴𝑚R𝑚

4

𝑚=1

=  A0 + A1R + A2R2 + A3R3 + A4R4                                  (10) 

wy =  F(y) = ∑ BnQn

4

n=1

  =  B0 + B1Q + B2Q2 + B3Q3 + B4Q4                                   (11) 

w(x, y) = ∑ ∑ 𝐴𝑚R𝑚𝐵𝑛Qn

∞

𝑛=1

∞

m=1

 = 𝐹(x). G(y)                                                                                   

 w(x, y) = (A0 + A1R + A2R2 + A3R3 + A4R4)(B0 + B1Q + B2Q2 + B3Q3 + B4Q4)   (12) 

 

The bending moments of plate in x and y directions are given as:  

Mx =
−Dx ∂2w

∂x2
                                                                                                                                (13) 

My =
−Dy ∂2w

∂y2
                                                                                                                                (14) 

where Dx and Dy are flexural rigidities of the plate in the x and y directions. 

Substituting into Equations (13) and (14) wx and wy from Equations (10) and (11), Mx and My can be non-dimensionalized 

into the following expression 

Mx = (2𝐴2 + 6𝐴3R + 12𝐴4R2)
−Dx

a2
                                                                                       (15) 

and 

My = (2𝐵2 + 6𝐵3Q + 12𝐵4Q2)
−Dy

b2
                                                                                     (16) 
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Equations (10), (11), (15), and (16) are used to obtain the displacement functions of the plate.  

Boundary Conditions 

 

Figure 2: Plan view of SCSC plate on Winkler foundation 

Consider the plate to be simply supported on two opposite side and clamped on the other two sides at y = 0 and y = b. The 

boundary conditions for such a type of mixed edges is, 

                                         w|y=b = 0                                                                                                  (17)                   

                                                  
∂w

∂x
|y=b = 0                                                                                                           (18) 

On the simply supported edges parallel to the 0 axis the boundary condition at  x = 0 and  x = a 

                                      w|x=a = 0                                                                                                  (19)   

                                  Mx|x=a =  −D [
∂2w

∂x2 + μ 
∂2w

∂y2 ]
x=a

= 0                                                                             (20)              

Development of Shape Function for SCSC Plate 

 

Figure 3: Plate clamped on two opposite edges and simply supported on two other opposite edges (SCSC) resting 

on Winkler foundation 

Boundary conditions  

• Deflections at all edges are zero 

• Slope at edge η = 0 or 1 is zero 

• Moment at edge ζ = 0 or 1 zero 

ζ and η represent non-dimensional coordinates in x and y respectively. 

For ζ − directions 

At ζ = 0, 

Simply Supported edge, Wx = 0; Mx = 0 

From Equation (10) 
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http://www.paperpublications.org/


ISSN  2393-8471 
 

International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME) 
Vol. 11, Issue 1, pp: (1-18), Month: April 2024 – September 2024, Available at: www.paperpublications.org 

 

Page | 6 
Paper Publications 

𝑤𝑥 =  A0 + A1ζ + A2ζ2 + A3ζ3 + A4ζ4                     

At ζ = 0 

∴    𝐴o = 0                                                                                                                                (21) 

From Equation (15) 

Mx = (2𝐴2 + 6𝐴3ζ + 12𝐴4ζ2)
−Dx

a2
                                                                                       

At ζ = 0 

  Mx = 2𝐴2

−Dx

a2
= 0                                                                                                                     (22) 

∴ 𝐴2 =  0, since  
−2Dx

a2
≠ 0   

𝐴2 =    0                                                                                                                                             (23) 

At ζ = 1 

Wx = 0 and Mx = 0  

From Equation (10) 

𝑤𝑥 =  A0 + A1ζ + A2ζ2 + A3ζ3 + A4ζ4                     

At ζ = 1 and bearing in mind that  𝐴o = 0 and 𝐴2 =  0 

     𝑤𝑥    = 0 + 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 = 0 

               =  0 + 𝐴1 + 0 + 𝐴3 + 𝐴4 

  𝐴1  + 𝐴3 + 𝐴4 = 0                                                                                                                        (24) 

From Equation (15) 

Mx = (2𝐴2 + 6𝐴3ζ + 12𝐴4ζ2)
−Dx

a2
                                                                                       

Since   
−D

a2 ≠ 0    and 𝐴2 =    0      

 Mx = 0 = 6𝐴3ζ + 12A4ζ2                    

⟹    6𝐴3 + 12𝐴4 = 0 

⟹     𝐴3 + 2𝐴4 = 0 

∴      𝐴3 = −2𝐴4                                                                                                                       (25) 

Putting Equation (25) into (26), we obtain  

𝐴1 + (−2𝐴4 ) + 𝐴4 = 0  

⟹   𝐴1 − 𝐴4 = 0 

∴     𝐴1 = 𝐴4                                                                                                                                                                    (26) 

Putting the value of 𝐴0, 𝐴1, 𝐴2, and 𝐴3 into Equation (10)  

𝑤𝑥 =  A0 + A1ζ + A2ζ2 + A3ζ3 + A4ζ4                     

      = 𝐴4ζ + (−2𝐴4)ζ3 + 𝐴4ζ4 

wx = 𝐴4(ζ − 2ζ3 + ζ4)                                                                                                            (27) 
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For 𝜂 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

At 𝑄 = 0 

Clamped edge, Wx = 0, 
𝜕𝑤𝑦  

𝜕𝑦
 = 0 

From Equation (11), 

wy =  B0 + B1η + B2η2 + B3η3 + B4η4      

At 𝑄 = 0 

  𝑊𝑦 = 𝐵0 = 0 

 ∴ 𝐵0 = 0                                                                                                                                          (28) 

Again, from Equation (11) 

wy =  B0 + B1η + B2η2 + B3η3 + B4η4      

  
𝜕𝑤𝑦  

𝜕𝑦
=

𝜕𝑤𝑦

𝑏𝜕𝜂
=

1

𝑏
(𝐵1 + 2𝐵2𝜂 + 3𝐵3𝜂2 + 4𝐵4𝜂3)                                                             (29) 

At η = 0 

𝜕𝑤𝑦

𝜕𝑦

= 0 =
1

𝑏
𝐵1 = 0 

𝑠𝑖𝑛𝑐𝑒 
1

𝑏
≠ 0 

𝐵1 = 0                                                                                                                                              (30) 

At 𝜂 = 1 

Wy = 0, 
𝜕𝑊  

𝜕𝑦
 = 0 

wy =  B0 + B1η + B2η2 + B3η3 + B4η4 

At 𝜂 = 1, bearing in mind that 𝐵0 = 0 and 𝐵1 = 0 

  𝑤𝑦 = 𝐵2 + 𝐵3 + 𝐵4 = 0 

⟹  𝐵2 + 𝐵3 + 𝐵4 = 0                                                                                                                    (31) 

𝐵2 = −(𝐵3 + 𝐵4)                                                                                                                             (32) 

Recall that  

𝜕𝑤𝑦   

𝜕𝑦
=

1

𝑏
(𝐵1 + 2𝐵2𝜂 + 3𝐵3𝜂2 + 4𝐵4𝜂3)                                                       

At 𝜂 = 1, bearing in mind that  𝐵1 = 0 

𝜕𝑤𝑦

𝜕𝑦

=
1

𝑏
(2𝐵2 + 3𝐵3 + 4𝐵4) = 0 

𝑠𝑖𝑛𝑐𝑒 
1

𝑏
 ≠ 0 

   2𝐵2 + 3𝐵3 + 4𝐵4    = 0                                                                                                               (33) 

Putting the value of 𝐵2 of Equation (32) into Equation (33), we obtain, 

−2(𝐵3 + 𝐵4) + 3𝐵3 + 4𝐵4 = 0  
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⟹ 𝐵3 + 2𝐵4 = 0 

∴  𝐵3 = −2𝐵4                                                                                                                                    (34) 

From Equation (32), 

𝐵2 = −(𝐵3 + 𝐵4) 

Substituting 𝐵3 = −2𝐵4 into 𝐵2 = −(𝐵3 + 𝐵4) we have 

  𝐵2 = −(−2𝐵4 + 𝐵4) 

 𝐵2 = −(−𝐵4) 

𝐵2 = 𝐵4                                                                                                                                              (35)  

Putting the expression of 𝐵0, 𝐵1, 𝐵2𝑎𝑛𝑑 𝐵3 into Equation (11), 

wy =  B0 + B1η + B2η2 + B3η3 + B4η4 

     = 𝐵4𝜂2 + (−2𝐵4)𝜂3 + 𝐵4𝜂4 

wy =   𝐵4(𝜂2 − 2𝜂3 + 𝜂4)                                                                                                           (36) 

Multiplying Equations (27) and (36), we obtain the displacement function for a rectangular plate clamped on two  

opposite long edges and simply supported on the other two opposite short edge in the form 

𝑊(𝑥, 𝑦) = Ϝ( 𝜁) ∗ 𝐺(𝜂) = 𝑤𝑥 ∗ 𝑤𝑦  

               = 𝐴4(ζ − 2ζ3 + ζ4) ∗ 𝐵4(𝜂2 − 2𝜂3 + 𝜂4) 

           = 𝐴4𝐵4(ζ − 2ζ3 + ζ4)(𝜂2 − 2𝜂3 + 𝜂4) 

𝑊(𝑥, 𝑦) = 𝑊(ζ, 𝜂)  = 𝐾(ζ − 2ζ3 + ζ4)(𝜂2 − 2𝜂3 + 𝜂4)                                              (37) 

Development of Fundamental Natural Frequency Expression of SCSC Plate for Free Vibration 

w(x, y) = w (ζ , η ) = kSp  

where: k = deflection constant  

Sp = a polynomial in ζ and η  

From Equation (37) we have 

𝑤(𝜁, 𝜂) =  𝑆𝑝 = (𝜁 −  2𝜁3 + 𝜁4 )(𝜂2 −  2.5𝜂3 + 𝜂4 )                                                                               (38)                                                                                       

𝜕4𝑆𝑝

𝜕𝜁4
=  24(𝜂2 −  2𝜂3 + 𝜂4 ) 

𝜕4𝑆𝑝

𝜕𝜂4
= 24(𝜁 −  2𝜁3 + 𝜁4) 

𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2 = (−12𝜁 +  12𝜁2 ) (2 − 12𝜂 +  12𝜂2 ) 

𝐾2 =  
1

𝛽4
(

𝜕4𝑆𝑝

𝜕𝜁4
) +  

2

𝛽2
(

𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2
) +  (

𝜕4𝑆𝑝

𝜕𝜂4
) 

  =  
1

𝛽4 24(𝜂2 −  2𝜂3 + 𝜂4 ) +
2

𝛽2 (−12𝜁 +  12𝜁2 ) (2 − 12𝜂 +  12𝜂2 ) +24(𝜁 −  2𝜁3 + 𝜁4)  

But  

(
𝜕4𝑆𝑝

𝜕𝜁4
) 𝑆𝑝 = 24(𝜂2 −  2𝜂3 + 𝜂4 )(𝜁 −  2𝜁3 + 𝜁4 )(𝜂2 −  2.5𝜂3 + 𝜂4 ) 
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= 24(𝜁 −  2𝜁3 + 𝜁4)(𝜂4 −  4𝜂5 + 6𝜂6 −  4𝜂7 + 𝜂8) 

 

(
𝜕4𝑆𝑝

𝜕𝜂4
) 𝑆𝑝 =  24(𝜁 −  2𝜁3 + 𝜁4)(𝜁 −  2𝜁3 + 𝜁4 )(𝜂2 −  2.5𝜂3 + 𝜂4 )                       

= 24(𝜂2 −  2𝜂3 + 𝜂4 )(𝜁2 −  4𝜁4 + 2𝜁5 + 4𝜁6 − 4𝜁7 + 𝜁8 ) 

 

(
𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2) 𝑆𝑝 = (−12𝜁 +  12𝜁2 ) (2 − 12𝜂 +  12𝜂2 )(𝜁 −  2𝜁3 + 𝜁4 )(𝜂2 −  2.5𝜂3 + 𝜂4 ) 

                        = (−12𝜁2 +  12𝜁3 + 24𝜁4 −  36𝜁5 + 12𝜁6)  (2𝜂2 −  16𝜂3 + 38𝜂4 − 36𝜂5 + 12𝜂6 ) 

Recall that  

𝑆𝑝 = (𝜁 −  2𝜁3 + 𝜁4 )(𝜂2 −  2.5𝜂3 + 𝜂4 ) 

Therefore 

 𝑆𝑝
2 = (𝜁2 − 4𝜁4 +  2𝜁5 +  4𝜁6 −  4𝜁7 + 𝜁8 )(𝜂4 −  4𝜂5 + 6𝜂6 − 4𝜂7 + 𝜂8)                                 (39)  

Now 

∫ ∫ (
𝜕4𝑆𝑝

𝜕𝜁4 ) 𝑆𝑝
1

0

1

0
𝜕𝜁𝜕𝜂 = 

 ∫ ∫ 24(𝜁 −  2𝜁3 + 𝜁4)(𝜂4 −  4𝜂5 + 6𝜂6 −  4𝜂7 + 𝜂8)

1

0

1

0

𝜕𝜁𝜕𝜂 

=  24 (
1

2
− 

2

4
+ 

1

5
) (

1

5
− 

4

6
+ 

6

7
−  

4

8
+  

1

9
)   

   = 0.007619048 

Therefore, 

∫ ∫ (
𝜕4𝑆𝑝

𝜕𝜁4
) 𝑆𝑝

1

0

1

0

𝜕𝜁𝜕𝜂 =  0.007619048
1

𝛽4
 

∫ ∫ (
𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2
) 𝑆𝑝

1

0

1

0

𝜕𝜁𝜕𝜂 

                = (−12𝜁2 +  12𝜁3 + 24𝜁4 −  36𝜁5 + 12𝜁6)  (2𝜂2 −  16𝜂3 + 38𝜂4 − 36𝜂5 + 12𝜂6 ) 𝜕𝜁𝜕𝜂 

                 =  (
−12

2
+ 

12

4
+ 

24

5
−  

36

6
+ 

12

7
) (

2

3
−  

16

4
+  

38

5
− 

36

6
+ 

12

7
) 

                  =  0.009251701 

∫ ∫
2

𝛽2
 (

𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2
) 𝑆𝑝

1

0

1

0

𝜕𝜁𝜕𝜂 = 0.018503402
1

𝛽2
 

∫ ∫  (
𝜕4𝑆𝑝

𝜕𝜂4
) 𝑆𝑝

1

0

1

0

𝜕𝜁𝜕𝜂 = 0.039365079 
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𝐶2 = ∫ ∫  (𝐾2𝑆𝑝)

1

0

1

0

𝜕𝜁𝜕𝜂 

𝐶2 = ∫ ∫  (
1

𝛽4
 (

𝜕4𝑆𝑝

𝜕𝜂4
) +

2

𝛽2
 (

𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2
) + (

𝜕4𝑆𝑝

𝜕𝜂4
))

1

0

1

0

𝑆𝑝𝜕𝜁𝜕𝜂  

 

       = ∫ ∫  
1

𝛽4
 (

𝜕4𝑆𝑝

𝜕𝜂4
) 𝑆𝑝𝜕𝜁𝜕𝜂 + ∫ ∫

2

𝛽2
 (

𝜕4𝑆𝑝

𝜕𝜁2𝜕𝜂2
) 𝑆𝑝𝜕𝜁𝜕𝜂

1

0

1

0

 +

1

0

1

0

 ∫ ∫  (
𝜕4𝑆𝑝

𝜕𝜂4
) 𝑆𝑝𝜕𝜁𝜕𝜂

1

0

1

0

 

 

𝐶2 = 0.007619048
1

𝛽4  + 0.018503402
1

𝛽2 + 0.039365079 

∫ ∫  𝑆𝑝
2

1

0

1

0

𝜕𝜁𝜕𝜂 =  ∫ ∫  

1

0

1

0

(𝜁2 − 4𝜁4 +  2𝜁5 +  4𝜁6 −  4𝜁7 + 𝜁8 )(2.25𝜂4 −  7.5𝜂5 + 9.25𝜂6 − 5𝜂7 + 𝜂8) 𝜕𝜁𝜕𝜂 

=  ( 
1

3
− 

4

5
+ 

1

3
−  

4

7
−

4

8
+ 

1

9
) ( 

1

5
−  

4

6
+  

6

7
− 

4

8
+ 

1

9
) 

 

                                                                    =  0.000078105 

𝐵2 = ∫ ∫  𝑆𝑝
2

1

0

1

0

𝜕𝜁𝜕𝜂 = 0.000078105 

 

𝐶2

𝐵2

=
0.007619048

1
𝛽4   +  0.018503402

1
𝛽2  +  0.039365079

0.000078105
 

 

=  
97.54868446

𝛽4
+  

236.9041931

𝛽2
+  504.0020357 

From Equation (1)  

 

ω =  
√

97.54868446

𝛽4 + 
236.9041931

𝛽2 + 504.0020357

𝑏2 √
𝐷

𝜌ℎ
+ √𝑘                                                    (40) 

Comparing Equations (1) and (40) we have 

𝐻𝑏𝛽  = √
97.54868446

𝛽4
+  

236.9041931

𝛽2
+  504.0020357 

From Equation (2) we have 

𝐻𝑏𝛽  =  √97.54868446φ4 + 236.9041931φ2 + 504.0020357                                              (41) 
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Functionally Graded Plate 

A functionally graded plate with length a, width b and a uniform thickness h is considered. The geometry of the plate and 

the coordinate system are shown in Figure 4. 

 

Figure 4: A typical FG rectangular plate element in Cartesian coordinates 

It is assumed that the material properties of the FG plate vary smoothly through the thickness. Based on the volume fraction 

of the constituent material, the Young’s modulus and density of FG plate can be written as functions of thickness coordinate, 

z, as follows (Birman and Byrd [19]):  

𝐸(𝑧) = (𝐸𝑐 −  𝐸𝑚) (
𝑧

ℎ
+

1

2
)

𝑛

+ 𝐸𝑚                                                                        (42) 

 (𝑧) = (
𝑐

− 
𝑚

) (
𝑧

ℎ
+

1

2
)

𝑛

+  
𝑚

                                                                      (43) 

where n is the power law index of the FG rectangular plate, the subscripts m and c show the metal and ceramic surfaces, 

respectively. Due to the small variations of the Poisson’s ratio, , it is assumed to be constant (Chakraverty and Pradhan 

[3]). 

According to this distribution, the bottom surface (z = - 
ℎ

2
) of FG plate pure metal, whereas the top surface (z = 

ℎ

2
) is pure 

ceramic. The stiffness coefficient is (Chakraverty and Pradhan [3]): 

𝐷 = 𝐷11 = ∫   𝑄11 

ℎ
2

−ℎ
2

𝑍2𝑑𝑧                                                                                                 (44) 

    = ∫  
𝐸(𝑧)

1 − 2
 

ℎ
2

−ℎ
2

𝑍2𝑑𝑧                                                                                          (45) 

=
1

1 − 2
∫  𝐸(𝑧) 

ℎ
2

−ℎ
2

𝑍2𝑑𝑧                                                                               (46) 

=
1

1 −  2
∫  {(𝐸𝑐 − 𝐸𝑚) (

𝑧

ℎ
+

1

2
)

𝑛

+  𝐸𝑚 } 

ℎ
2

−ℎ
2

𝑍2𝑑𝑧                                                                           (47) 

=
1

1 −  2
∫  {(𝐸𝑐 − 𝐸𝑚) (

𝑧

ℎ
+

1

2
)

𝑛

  } 𝑍2𝑑𝑧 + ∫   

ℎ
2

−ℎ
2

𝐸𝑚

ℎ
2

−ℎ
2

𝑍2𝑑𝑧                                                      (48) 

=
(𝐸𝑐 −  𝐸𝑚)ℎ3

1 − 2
{

1

𝑛 + 3
− 

1

𝑛 + 2
+  

1

4(𝑛 + 1)
 } +  

𝐸𝑚ℎ3

12(1 −  2)
                                                 (49) 

While the inertia coefficient is (Chakraverty and Pradhan [3]): 

http://www.paperpublications.org/journal/IJRRCME
http://www.paperpublications.org/


ISSN  2393-8471 
 

International Journal of Recent Research in Civil and Mechanical Engineering (IJRRCME) 
Vol. 11, Issue 1, pp: (1-18), Month: April 2024 – September 2024, Available at: www.paperpublications.org 

 

Page | 12 
Paper Publications 

𝐼0 = ℎ = ∫ (𝑧) 

ℎ
2

−ℎ
2

𝑑𝑧                                                                                                    (50) 

        =
(

𝑐
−  

𝑚
)ℎ

𝑛 +  1
  +  

𝑚
ℎ                                                                                          (51) 

Material Properties of the FGM constituents  

An Al/Al2O3 functionally graded plate which is composed of aluminum (as metal) and alumina (as ceramic) is considered. 

The Young’s modulus and density of aluminum are Em = 70 GPa and m = 2700 kg/m3, respectively, and that of alumina 

are Ec = 380 GPa and c = 3800 kg/m3, respectively. The Poisson ratio of the plate is assumed to be constant through the 

thickness and equal to 0.3.  

Table 1: Material Properties of the FGM constituents 

Properties Unit Aluminum (Al) Alumina (Al2O3) 

E GPa 70 380 

 Kg/m3 2700 3800 

 - 0.3 0.3 

III.   RESULTS AND DISCUSSION 

The results obtained from the preceding section are highlighted here. An Al/Al2O3 functionally graded plate which is 

composed of aluminum (as metal) and alumina (as ceramic) is considered. The Young’s modulus and density of aluminum 

are Em = 70 GPa and m = 2700 kg/m3, respectively, and that of alumina are Ec = 380 GPa and c = 3800 kg/m3, respectively. 

The Poisson ratio of the plate is assumed to be constant through the thickness and equal to 0.3.  

The expression for the fundamental natural frequencies of the plate is given as 

  𝜔 =  
√𝐴1φ4 + 𝐵1φ2 + 𝐶1

𝑏2
 √

𝐷

𝜌ℎ
+ √𝑘  

The equivalent Winkler parameter is defined as 

𝑘 =  
𝐾𝑤b4

𝐷
 

While the natural frequency equation for the SCSC plate in terms of φ and b is 

𝐻𝑏𝛽  =  √97.54868446φ4 + 236.9041931φ2 + 504.0020357 

Table 2 shows the non-dimensional natural frequencies Hbβ for isotropic SCSC plate with various aspect ratios 𝛽 =
𝑏

𝑎
  

Table 2: Non-dimensional natural frequencies Hbβ for isotropic SCSC plate with various aspect ratios 𝜷 =
𝒃

𝒂
 

kw ks 

Aspect 

Ratio  

𝛽 =
𝑏

𝑎
 

Hbβ1 

0 0 0.1 22.503 

  0.2 22.664 

  0.3 22.937 

  0.4 23.332 

  0.5 23.861 

  0.6 24.534 
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  0.7 25.367 

  0.8 26.374 

  0.9 27.566 

  1.0 28.958 

100 0 0.1 25.377 

  0.2 25.538 

  0.3 25.811 

  0.4 26.206 

  0.5 26.735 

  0.6 27.408 

  0.7 28.241 

  0.8 29.248 

  0.9 30.440 

  1.0 31.832 

In Table 2, the comparison of the natural frequencies of SCSC FG plate with those reported by Chakraverty and Pradhan 

[3], Hosseini- Hashemi et al. [5], Baferani et al. [18], Bahmyari et. al. [8], Parida and Mohanty [13], for various aspect 

ratios are presented. 

Table 3: Comparison of non-dimensional frequency parameters Hbβ for SCSC plates for various aspect ratios 𝜷 =
𝒃

𝒂
 

  

Non-Dimensional Frequency Parameter 

 

(Kw, Ks) 

Aspect 

Ratio 

𝛽 =
𝑏

𝑎
 

Present 

study 

Chakraverty 

and Pradhan 

[3] 

Hosseini- 

Hashemi et 

al. 

[5] 

Baferani et 

al. [18] 

Bahmyari et. 

al. 

[8] 

Parida and 

Mohanty 

[13] 

(0, 0) 0.2 22.664 22.593 - - - - 

 0.5 23.861 23.816 - - - - 

 1.0 28.958 28.951 28.944 28.944 29.003 28.995 

 2.0 54.885 54.743 - - - - 

(100, 0) 1.0 31.832 30.629 30.623 30.623 - 30.672 

It can be deduced from Table 3 that the Winkler foundation parameter has a dominant influence on the frequencies of plates 

on elastic foundation. Without considering the effect of Winkler elastic foundation, an increase in aspect ratios leads to 

increase in frequency parameters.  

Table 4: The frequency parameters of SCSC FG rectangular plates with different n and aspect ratios, (Kw = 0) 

Power-law exponent n Aspect ratio (b/a)  Present study Chakraverty and Pradhan 

[3] 

0 0.2 22.664 22.593 

 0.5 23.861 23.816 

 1.0 28.958 28.951 

 2.0 54.885 54.743 

0.2 0.2 20.305 21.138 

 0.5 21.377 22.282 

 1.0 25.943 27.087 

 2.0 49.171 51.218 

0.5 0.2 19.049 19.843 

 0.5 20.055 20.918 

 1.0 24.339 25.428 

 2.0 46.131 48.081 
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1.0 0.2 18.045 18.798 

 0.5 18.998 19.816 

 1.0 23.056 24.089 

 2.0 43.699 45.549 

2.0 0.2 17.241 17.969 

 0.5 18.151 18.942 

 1.0 22.028 23.027 

 2.0 41.751 43.541 

Table 4 shows the non-dimensional frequencies of SCSC FG rectangular plates with different power law exponents, n and 

aspect ratios. It is clear that frequency parameters are increasing with increase in aspect ratios for a given power-law index. 

It is also noticeable that the frequencies are decreasing with increase in power-law indices for a given aspect ratio. 

Table 5: Frequency parameters of FG rectangular plate (
𝒃

𝒂
= 𝟐, 𝒏 = 𝟏) with different elastic moduli (kw) 

BCs kw Frequency parameter 

SCSC 
0 54.885 

100 57.082 

In Table 5, the non-dimensional frequency parameters of SCSC FG plate with aspect ratio 
𝑏

𝑎
= 2, and power law index n = 

0 are compared with those obtained by Chakraverty and Pradhan [3]. An introduction of a Winkler elastic parameter (kw = 

100) increases the frequency parameter of SCSC plate.  

Table 6: The frequency parameters of square SCSC FG Al/Al2O3 plates with different power-law indices (n) and 

kw = 100 

n Sources Frequency parameters 

0 
Present study 30.656 

Chakraverty and Pradhan [3] 30.629 

0.2 
Present study 29.325 

Chakraverty and Pradhan [3] 28.729 

0.5 
Present study 27.797 

Chakraverty and Pradhan [3] 27.046 

2.0 
Present study 25.693 

Chakraverty and Pradhan [3] 24.656 

The effect of power law index on the frequency of vibration of SCSC FG plate resting on Winkler elastic foundation is very 

interesting. As it can be seen in Table 6, the increase in power law index decreases the frequency parameters of the plate. 

Table 7: Frequency parameters of SCSC FG Al/Al2O3 plates with different aspect ratios  (
𝒃

𝒂
 ) (n = 1, kw = 100) 

𝑏

𝑎
 Sources Frequency parameters 

0.2 
Present study 21.600 

Chakraverty and Pradhan [3] 20.732 

0.5 
Present study 22.553 

Chakraverty and Pradhan [3] 21.674 

1.0 
Present study 26.611 

Chakraverty and Pradhan [3] 25.702 

2.0 
Present study 47.254 

Chakraverty and Pradhan [3] 46.696 

In Table 7, the comparison of the frequency parameters of SCSC FG plate with those reported by Chakraverty and Pradhan 

[3] using Rayleigh-Ritz method is presented for different aspect ratios. It is observed that with increase in aspect ratios, the 

frequency parameters increase. 
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In Figures 5 and 6, the mode shapes of the plate for aspect ratios 0.5 and 1, respectively, are shown.  

 

Figure 5: First five mode shapes of SCSC plates (𝜷 = 𝟎. 𝟓) 
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Figure 6: First five mode shapes of SCSC plates (𝜷 = 𝟏) 
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IV.   CONCLUSION 

In this work, integral calculus has been applied to the beam analogy method for the evaluation of the non-dimensional 

frequency parameters of isotropic FG rectangular plates resting on Winkler elastic foundation. The fundamental 

assumptions of linear, elastic, small-deflection theory of bending for thin plates due to Kirchhoff are taken into 

consideration. The Winkler foundation parameter has a dominant influence on the frequencies of plates on elastic 

foundation. It is evident that adding an elastic foundation increases the non-dimensional frequency parameter of the plates. 

Without considering the effect of Winkler elastic foundation, an increase in aspect ratios also leads to increase in frequency 

parameters. It is also observed that an increase in power law index decreases the frequency parameters of the plate. Based 

on the results obtained, it can be concluded that the model developed present an efficient technique for the evaluation and 

prediction of the non-dimensional frequency parameters of FG plates resting on Winkler elastic foundation. 
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