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Abstract: This research work is aimed at determining the Flexural [F] critical buckling load, P¢™ for Doubly
Symmetrical Single (DSS) cell Thin-Walled Columns [TWC] cross section at different boundary conditions using
Rayleigh-Ritz Method (RRM) with Polynomial Shape Functions . It is the follow up of the works by Nwachukwu
and others (2017) and Nwachukwu and others (2021a) where the governing equation for the Total Potential Energy
Functional (TPEF) for a Thin- Walled Box Column (TWBC) applicable to RRM and peculiar TPEF for DSS cross
— section were derived respectively. Using the derived DSS equations, series of stability matrices and polynomial
equations were generated through the minimization of DSS TPEF for each of the Pinned-Pinned [S-S], Fixed-
Pinned[C-S] , Fixed-Fixed [C-C] boundary conditions. Upon handy solution of the polynomials (stability matrices)
with developed well-coordinated algorithm, flexural P¢"# values were obtained for the DSS cell cross- section and
compared with works of Ezeh and Osadebe (2010) who used Vlasov method. The evaluated DSS —[F]-P¢"it values
are found helpful in providing useful design data for selection of suitable TWC profile to any TWC designer with
the assurance of meeting all engineering design safety criteria. Even though the RRM P values are smaller when
compared with that of Vlasov’s, it didn’t fall short of TWC safety/stability criteria. Subsequently, it is recommended
that structural designers should select design values that are a little bit greater than the DSS- RRM evaluated
critical buckling values in order to ensure safety of the TWC structure.

Keywords: Stability / Buckling Analysis , DSS, Thin -Walled Box Column (TWBC) or Thin-Walled Column (TWC),
Rayleigh- Ritz Method (RRM), Flexural Critical Buckling Load (P°Y).

1. INTRODUCTION

A thin-walled structure (TWS), according to Murray (1984), is one which is made from thin plates joined along their edges.
The plate thickness for the TWS however is small compared to other cross sectional dimensions which are in turn often
small compared with the overall length of the member or structure. TWS have a high load-carrying capacity, despite their
small thickness (Sudhir and others, 2014). Thin-walled columns (TWC) as well as other TWS are very light compared with
alternative structures and therefore, they are used extensively in long-span bridges and other structures where weight and
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cost are prime considerations. They are widely used in the construction industry because of their light weight and economy,
particularly for long span floors in industrial and public buildings and for storage structures for liquids and bulk materials,
such as tanks, hoppers, silos, and coal houses. Thin- walled structures are especially suitable for use in constructing
Aircrafts, exhibition pavilions, concert halls, and sports arenas because the variety of available shapes permits great
architectural expression, the covering of wide areas, and flexibility in the choice of construction materials, including steel,
aluminum, reinforced concrete, and laminated plastic. In a nutshell, according to Richard Lieu and others (1998), thin-
plated structures are used extensively in building construction, automobile, aircraft, shipbuilding and other industries
because of a number of favourable factors such as high strength-weight ratio, development of new materials and processes
and the availability of efficient analytical methods.

Owing to the numerous applications of TWC or TWS in general and the resulted instability due their high carrying capacity,
the study of stability becomes necessary. According to Srinath (2009), stability represents a fundamental problem in solid
mechanics, which must be mastered to ensure the safety of structures against collapse. The theory of stability is of crucial
importance for TWS applications to structural engineering, aerospace engineering, nuclear engineering, offshore, and ocean
engineering. According to Bazant (2000), the theory of stability also plays an important role in certain problems of space
structures, geotechnical structures, geophysics and material science. The continued importance and vitality of research on
structural stability problem is due to technical and economic developments that demand the use of ever stronger and ever
higher structures in an increasingly wider range of applications. According to Mohri and others (2008), such an expansion
of use is made possible by developments in manufacturing, fabrication technology, computer- aided- design, economic
competition and construction efficiency. These developments continually do not only change the way in which traditional
structures are designed and built, but they also make possible the economic use of materials in other areas of application,
such as offshore structures, transportation vehicles, and outer- space structures.

DSS are common examples of TWC cross —sections and according to Simao and Simoes da silva (2004), the use of very
slender thin-walled cross-sections members have become increasingly in demand due to their high stiffness/weight ratio, in
recent years. For about a century many branches of the industry have sought stronger and at the same time lighter structural
solutions which optimize the effectiveness and the cost of the structures (Andreassen, 2012). Such industries cut across
civil, offshore, mechanical, naval, and aerospace industries. Other cross- sections that the author has considered/ will
consider include: Doubly Symmetric Single cell cross- section (DSS), Doubly Symmetric Multi- cell cross- section (DSM),
Mono- Symmetric Single cell cross- section (MSS), Mono- Symmetric Multi- cell cross- section (MSM), Asymmetric
Single cell cross- section (ASS) and Asymmetric Multi- cell cross- section (ASM).

This present study is an attempt to determine the flexural critical buckling load for a DSS TWC cross-section under different
boundary conditions based on formulated RRM based TPEF. It is the follow up of the works by Nwachukwu and others
(2017) and Nwachukwu and others (2021a) where the governing equations for the TPEF for a TWBC applicable to RRM
and peculiar TPEF for DSS cross — section were derived respectively. Of recent, many researchers have carried out one
form of analysis or the other on thin- walled box columns and related topics. For instant, Krolak and others (2009) presented
a theoretical, numerical and experimental analysis of the stability and ultimate load of multi-cell thin-walled columns of
rectangular and square cross-sections subjected to axial compression. Shanmugam and others (1989) presented a numerical
method to investigate the ultimate strength behavior of thin-walled steel box columns subjected to axial loads and biaxial
end moments. The work of Ezeh (2009) involved a theoretical formulation based on Vlasov’s theory as modified by
Varbanov, in analyzing flexural, flexural-torsional, and flexural-torsional-distortional buckling modes of thin-walled closed
columns. Chidolue and Osadebe (2012), also used Vlasov’s theory to carryout Torsional- Distortional analysis of thin-
walled box girder bridges. Chidolue and Aginam (2012) investigated the effects of shape factor on the Flexural- Torsional-
Distortional behavior of thin- walled box girder structures using Vlasov’s Theory. Ezeh (2010) also investigated the
buckling behavior of axially compressed multi- cell doubly symmetric thin- walled column using Vlasov’s theory. The
works of Osadebe and Chidolue (2012a), Osadebe and Chidolue (2012b), Osadebe and Ezeh (2009a), Osadebe and Ezeh
(2009b) were also based on Vlasov’s method. Again, Ezeh and Osadebe (2010) carried out a research work on the
Comparative Study of Vlasov and Euler Instabilities Of Axially Compressed Thin-Walled Box Columns. Nwachukwu and
others (2017) and Nwachukwu and others (2021a) derived the RRM based governing TPEF equation for the TWBC
applicable to RRM and evaluate and formulate the peculiar TPEF for DSS cross — section respectively. Nwachukwu and
others (2021b) evaluated and formulated the TPEF for DSM and MSM cross section. Again, Nwachukwu and others (2022a)
have evaluated and formulated the peculiar TPEF for MSS TWC cross section. Finally, Nwachukwu and others (2022b)
have also evaluated and formulated the peculiar TPEF for ASS TWC cross section. Thus in the area of stability analysis of
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thin-walled box (closed) columns, little or no effort has been done to use RRM with polynomial shape function to determine
the flexural critical buckling load for a DSS cross-section. Henceforth, the need for this recent research work. The flexural
DSS critical buckling values will form design data for TWC designers when selecting suitable profile for the TWC under
stability design

2. THEORITICAL BACKGROUND ON DSS - RRM BASED TWBC FLEXURAL STABILTY
ANALYSIS

2.1. THE FORMULATED GENERAL RRM - BASED TPEF FOR TWBC

The major objective of this work carried out by Nwachukwu and others (2017) was to formulate the general TPEF for the
TWBC in line with RRM — based stability analysis. This general RRM based TPEF is shown in Egn.(1).

no=ky [P x?QRL-x)%dx + Kk, [(v))? dx+ ks [[(v")?dx —k, [, (v)?dx. @)
2 AG
InEqn.(1), k, = :E%; ky= 25 k= ?; and k, = g 2(a-d)

Where P is critical buckling load, A is Cross sectional area, E is young modulus of elasticity, G is shear modulus, | is
moment of inertia, and L is length of the thin- walled column.

Also from Eqn.(1), v = the displacement function, which is a function of polynomial shape function, ¢

According to Rayleigh- Ritz Theory: v = Y"c;¢p; =ci¢p1 + o, +c3ps+ ... + ¢ (3) In
Eqgn.(3), ¢ = undetermined coefficient / unknown constant and ¢ = Polynomial shape function. From the work of
Nwachukwu and others (2021a). the Polynomial Shape Function, ¢ has been generated for the S-S, C-C and C-S boundary
conditions.

2.2. THE FORMULATED PECULIAR RRM - BASED TPEF FOR DSS TWBC AT DIFFERENT BOUNDAY
CONDITIONS

Again Nwachukwu and others (2021a) has used Eqn. (1) in combination with the generated polynomial shape function to
formulate the peculiar/individual TPEF for Doubly Symmetric Single (DSS) cell TWBC for different boundary conditions
as shown in Eqgns. (5), (10) and (12).

(a). CASE 1: PINNED-PINNED(S-S)- DSS- TWBC.

S-S DSS S-S DSS S-S DSS S-S DSS S-S
Tpss = K1~ @17 >+ K77 070+ kg U U037 — Ky U@y 4)
390c;%L1? 10c, 2L 8c1c216300 L0 20c1¢,v6300 L1
kiP5 [ 24c¢,% 110 — 60c, 2L + o =100 - S +
74c1c2\/6300 L1? 26¢1¢2\/6300 L1 2c1¢2V/6300 L1°
% + 8c¢;c,V6300 13 =1 5 12 - + 168C22 [0 — 980c22L11+2310c22 1?2 —
5565c,2L13 5390c,2L1* 2 115 , 840cy2L16 ASM 2 2 212
> + . -588¢,° L' +————]+ k,”"[30c,° —60c;* L +40c;°L* — 2 ¢cyc,V6300

+8 ¢y, V6300 L-12¢,c, V6300 L2 + 6.cycp V6300 L2 +210c,2 — 1260c,2L  +3360c,2[2 —

120c,2 24 ¢1c21/6300 L2 V6300 + 7560c52 15120c,2
L? L? L L?

3780c,2L3 + 1512¢,2L* | + k3P5° [ +10080c,?]

—k,P%5 [30c,2 — 60c,2 L 4 40¢,2L? — 2 ¢,¢,7/6300 +8cyc, V6300 L-12¢,¢c, V6300 L2 + 6c,c, V6300 L3

+210¢,2 — 1260c,%L +3360¢,212 — 3780¢,2L3 + 1512¢,%L* | )
pss _  APSSp? pss _ APSSe . pss _  EIPSS pss _ P
Where , k, = BE2(DSS) ! 2 = ks = 5 & ky = 3 6(a-d)

From the works of Nwachukwu and others (2021a),

APSS = Cross- sectional Area in m? = 10at ©)
IPSS = Moment of Inertia of the plate in m* = 0.83at® + 283 8)
t  =Thickness of the column in metres
a = Column cross section dimension in metres
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(b). CASE 2: FIXED-FIXEDI[C-C]- DSS- TWBC.
The peculiar TPEF for DSS-[C-C] TWBC has been obtained as follows:

S8 = less 0,6 C+ kZDSS 0,6~€ + k3DSS(p3L‘—C —k4Dss(p4C_C o)
2716 218
= I [360c,? L'? — 15756, L1 + 2870¢, 211 2772¢,2115 + 1T L g0c,20174 S0
7216253900 L7 V573900L12 +  63¢,c,¥53900 L' - 162¢,¢,v/53900 L'*+ w B 183661621—\/f3T0L16

19
87¢,,V53900 LV — 24¢,¢,V/53900 [1+ A0 4 3960c,2 [12 - 31185¢,2L1 + 105490c,? L1 —

949410c, %118

1995840¢,%L15 + 230580c,2 L6 — 166320c,2L7+ — 17820¢,2L° + 1848c¢,2L2%+k,"%S [840c, %12

3780c¢,2L% + 6552¢,2L* — 5040¢,2L° + 1440c¢,2L%- 24c,c,v/53900L2 + 171¢,c,V53900L3 - 432c,c,v/53900L*
564c,¢,V/53900L5 - 360c,c,v/53900L° + 90¢,c,V53900L7 + 9240c,2L* — 83160c,%L3 + 310464¢,2L* —

2520c;%2  8820c,?

+

600600c,2L> + 633600c,2L°- 346500c,%L” + 77000c,2L8] + kyP%° [ - = +40320c,*- 45360c,’L +
18144c¢,212- ”WZL;S”"" + 648””2LV539°° - 2592¢,¢, V53900 + 4896¢,c, V53900 L -4320c,c, V5390012 +

27720c;%2  332640c,2

1440¢;c, V53900L% + ~— 2 + 1884960, — 5266800c,%L +  7650720¢,%L* - 5544000c,L?
1584000c,2L* | —k,”*° [840c,%L% — 3780c,%L3 + 6552¢,2L* — 5040¢,%L° - 24¢;c,\/53900L% + 171c¢;c,V/53900L3 -

432¢,¢,V/53900L% + 564c,c,V53900L° - 360c,c,V/53900L8 + 90c,c,v/53900L7 + 9240c,2L* — 83160c,2L3 +
310464c,2L* 600600c,2L5 + 633600c,2L5- 346500¢,2L7 + 77000c,2L8 ] (10)

+

Where k,2%°,  k,°%, k" and  k,”5°  are defined in Eqns. 6(a-d) respectively.
(). CASE 3: FIXED-PINNED[C-S]- DSS TWBC
The peculiar TPEF for DSS-[C-S] TWB has been obtained as follows:

c-S _— DSS c-S DSS c-S DSS c-S DSS c-S
Tpss = ki ° @177 ko777 05T+ RT3 T — kg g (11)
= |, DSS [22680612 L2 98280c % L13 + 174510¢,2 L' 162540c¢,2 L15 + 83790c, 2 L1® 22680c,2 L7 + 2520c,2 L8
1 133 152 171 190 209 228 247
21sc c V53900 1z 4 10728C c V53900 [13. 3907sc c 1/53900 [ 4 sssooc c V53900 45 4-4-64-0C c \/53900 116 4
7 172 1693 8 172 1693 9 172 zg93 10 172 (2693 11 172 (2693
18000C c V53900 117 3546C c V53900 18 4 252C c V53900 119 + 27720c,2 L12
12 172 Jz693 13 172 7693 14 172 /7693 1729
2633400c,2 L13 66784410c,% L1*  203312340c,2 L15 + 250637310c,2 L16 151295760c,2 L17 + 45952830c,2 L8 6500340c,2 L1°
1976 2223 2470 2717 2964 3211 3458
339570c,2 L2 4k DSS [22680612 L? B 113400c¢,2 L3 + 202230c,2 L* B 151200¢4 2 L5 + 40320c,2 L® _ 216 \/53900 2+
3705 2 57 76) 95 114 133 3 172 1693
15768C c V53900 .3 61254C c V53900 ;4 +81324C c V53900 5 39978C c \/53900 16 + 5040C c V53900 17 + 27720c,2 L2
4 172 2693 5 172 /2693 6 172 1693 7 172 1693 8 172 1693 741
B 3908520¢,2 L3 + 143497970¢,% L*  415273320¢,° L° + 379861020c,2 L® B 102841200c¢,2 L7 + 8489250¢,>2 L8] + kDS [22680012 B
988 1235 1482 1729 1976 2223 3 1912
226800c,2 + 748440c,2 907200c,% L + 362880c, 2 L? 216C c V53900 31536C c \/53900 221832C c \/53900
38L 57 76 95 12 172 1693 2L 172 3693 3 172 zg93
480384 V/53900 350352 V53900 ;5 , 60480 V53900 ;3 | 24640c,%  7817040c,2 + 568731240c,2  2489699520c,2 L
4 172 1693 5 172 /7693 6 172 (7693 24712 494L 741 988
+ 3350350080c,2 L2 123094400c,2 L3 + 135828000c,2 L* ]
1235 1482 1729
_,DSS [22680612 L? _ 113400c¢,2 L3 + 202230c¢,2 L* B 151200¢42 LS + 40320c,2 L® ) 216C c V53900 5 15768C c V53900 3
4 —= G162 1C2
57 76) 95 114 133 3 V4693 4 V4693
61254C c V53900 ,4 + 81324—C c V53900 |5 39978C c \/53900 16 + 5040(; c v/53900 7
5 172 193 6 172 (1693 7 172 1693 g8 172 1593

27720c,% L?  3908520c,2 L3 + 143497970c,% L*  415273320c,2 L5 | 379861020c,% L°  102841200c,2 L7 + 8489250c,2 L8 1(12)

741 988 1235 1482 I 1729 1976 2223

Where k.55, k,%5, k" and k255 are defined in Eqns.6 (a-d) respectively.
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3. RRM FLEXURAL STABILITY ANALYSIS OF DOUBLY SYMMETRIC SINGLE CELL THIN-
WALLED BOX COLUMN

The Total Potential Energy Functional for DSS cross section as derived by Nwachukwu and others (2021a) are stated in
Eqgns.(5), (10) and (12) respectively for Pinned- Pinned [S-S] , Fixed- Fixed [C-C] and Fixed- Pinned [C-S] Boundary
conditions. For the flexural buckling analysis (that is for non- deformable DSS Thin- walled cross section), the K255 and
KPSS components disappear. For KPS is the torsional component of the buckling analysis, K255 is the distortional
component (for deformed cross section) of the buckling analysis and K55 is the flexural component.

3.1. PINNED- PINNED [S-S]- DSS-TWC STABILITY ANALYSIS FOR FLEXURAL BUCKLING
Eqn. (5) is the TPEF for the Pinned- Pinned [S-S]- DSS- TWC .
Minimization of Eqn. (5) wrt C; and C, respectively gives Eqn.(13) in matrix form:
ol ) {o} (13)

Where,

ay; = KPSS [0 [48-120 L+ 2212 - 20 1 + Z2L* ] + KPSS [60- 120 + 80L? +KPSS [240 —] - KPSS[60 - 120L
+ 8012 ] (14)

@y, = KPSS [0 - \/6300 +—\/6300 L - Z+/6300 L? +8+6300 L’ - WWL‘* +§\/WL5] + KPSS [-

216300 +8v6300 L -12+/6300 L2 + 66300 L3 | + KPS [-24 Y20 4 p4 Y800 | _ gDSS [ 2\/6300
8v6300 L -12+6300 L2+ 6+/6300 L° ] (15)  a, =
KDPSs o[- \/6300 + 26300 L - /6300 L2 +8/6300 L* - 216300 L* +§\/6300 5] +

KPSS [- 24/6300 +8v6300 L - 126300 L + 66300 L3 | + KPSS [- 24V6300 24V6i°° ]
KPSS[-24/6300 + 86300 L -12+/6300 L? +6+/6300 L ] (16)

10780 1680

Ay, =KPSSIIO[ 336- 1980 L + 4620 L2 - 55651° + S1176L5 + “SRIS] + KPSS[420 -2520L + 6720
L2 - 7560 L3 + 3024 L* ] + KPSS [ 20160 +15120 - - 30240+ ] - KPSS [420 -2520L +6720 L2 - 7560 L3 + 3024 L*

] (7
For the non- trivial solution for C, and C, , the determinant of stability matrix in Eqn.(13) equals zero.
. a1 A1z _ (0
That is: . a22| = {0} (18)

Solving Eqgn.(18) gives :

@y Ay -y Ay = 0 (19)
Then, for flexural buckling, KPSS = KPSS =0 (20)
Thus, substituting Eqns. (14) - (17), noting Eqn.(20), we have;
CRPSSNSS - KPSNSHARPONSS - RPN} -{KPSNES - KPSNEYIRDSNSS -KPSN§SY =0 ()
— [Klz(DSS)lesNgs _ Kf’SSKfsststS _ KlnsstssstsNgs + Kf(DSS)NZSSNfS ]7[K12(D53)N555N7SS _
KlnsstssNgsNgs _ KlDSSI(fSSNGSSNfS + Kf(DSS)NGSSNgS] = 0 (22)
— K12(DSS)[N155N3:55 _ NSSSN7SS] _ KIDSSKfss [lests + stsNés‘s _ Nssstss _ N655N7SS] + K42(DSS) [st'sts
Ng*Ng°1= 0 (23)
Substituting the values of KPSS and KP5Sin Egns. 6(a- d) into Eqn.(23), we have:

pt42(DSS) p34(DSS)

P2
capenmss INENSS = NESNF] - -Somes INFSNGS + NFNGS — NSINGS — NGENFS1 + ——[NSSNGS — NESNG®] =
0 (24)
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c x(DSS) _ ADsS

Let gE [2(DSS)

= Kings Constant for DSS cross- section (25)

Substituting Eqn.(25) into Eqn.(24) yields :

p4gDss _ P3g§55 +P29PSS = 0 (26)
Where
gpss = KPS NSsyss _ NSSNSS) (27)
6055 = CKPIINSSNGS + NSSNSS — NSSNGS — NSSNSS| (28)
6555 = LINSSNSS — NSSNS] (29)
NSS =110[48-120L+ 22212 -20 13 + 23—0L4] (30)
N5S = [60-120L + 80L2] (31)
N§S =11°[ 336- 1980 L + 4620 L? - 556513 + —2L* - 117615 + —21°] (32)
N§S =420 -2520L + 6720 L? - 7560 L3 + 3024 L* (33)

N$S =110 [~ 216300 + 226300 L - V6300 L2 +8v6300 L* - V6300 L* +2+6300 L°]  (34)

NgS =-2V6300 +8V6300 L -12+/6300 L?> + 66300 L3 (35)

N§S = [1°[— 2v6300 +2V6300 L -Z+/6300 L* +8+6300 L* - 226300 L* +2+6300 L]  (36)

Ng$S =-2/6300 +8v6300 L -12+/6300 L? +6+/6300 L? (37)
From Eqn.(26), we have: P? (Pzefss—éPef“ +0055) = 0 (38)
Since P2#0, = P29555—§P9555 +0P5S = Qor2p2gPSS — pePSS +20P55 = 0 39(a- c)
Where

P or PJsSS or Pt is the critical buckling load for Flexural -DSS-SS-TWC stability analysis
3.2. FIXED- FIXED [C-C]- DSS-TWC STABILITY ANALYSIS FOR FLEXURAL BUCKLING
Eqn. (10) is the TPEF for the Fixed- Fixed [C-C]- DSS- TWC .
Minimization of Eqgn. (10) wrt C, and C, respectively gives Eqn.(40) in matrix form:
ol ) = 0 @)
Where

32760 1260

Bin = KPSS112[720 - 3150 + 5740 L? -5544 L% +="204-840 L5 + =21°] + KPSSL? [1680 - 7560L + 13104 L2
- 10080 L? + 2880L* | + KPSS [5040 le - 17640 Ll + 80640- 90720L + 36288L2]- KPSS[2 [1680 - 7560L + 13104 L2 -
10080 L3 + 2880L* ] (41)

B, = KPSS[2[ gm + 6353900 L — 16253900 L* + “2°v53900 L* - ~-=\/53900 L* + 87
V53900 L° - 24 /53900 LS + «/WUH KDPSS|2[- 24m+171\/WL - 432+/53900 1? + 564
V53900 L - 360 /53900 L* +90\/WL5] + KPSS[- 253900 + 22V53900 - 2592v53900 -+ 4896

V53900  —4320+6300 L? + 144053900 L%] - KfSSLZ [- 244/53900 +171+/53900 L - 432+/53900 L2
+ 564+/53900 L3 -360+/53900 L* +90+/53900 L°] (42)
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Bor = KPSS[12 [ %/53900 + 6353900 L — 162+/53900 L2 + %%3900 L3 - %\/53900 I* + 87
V53900 L° - 24 V53900 L° +22v/53900 L’] + KPSI?[- 2453900 + 17153900 L - 43253900 L? + 564

V53900 L -360v53900 L* +90V53900 L]+ KPSS[- 2453900 + 2253900 - 259253900  + 4896

V53900 L —4320v53900 L? + 144053900 L?]- KPSS I2[- 24v/53900 + 171+/53900 L - 432+/53900 L? +
564 /53900 L3 - 360 V53900 L* + 9053900 L° ] (43)

And

Brp =KPSS 112 [7920 — 62370 L + 210980 L2 -3991680 L3+ 461160 L* - 332640 L5 + 222%276 _ 35640 L7 +

3696 L8]+ KPSSL2[18480 - 166320 L + 620928 L? - 1201200 L3 + 1267200 L* - 693000 L° +154000 L°] + KPS5 [
55440 Liz— 665280 Ll+ 3769920 - 10533600L + 15301440 L? - 11088000L3 + 3168000L* ] - KPS L [18480 - 166320
L + 620928 L?-1201200 L3 + 1267200 L* - 693000 L°> +154000 L°] (44)

For the non- trivial solution for C, and C, , the determinant of stability matrix of Eqn.(40) equals zero.

B Brz _ (0

B 21 B22 - {0} (45)
Solving Eqn.(45) yields: By1 B2 - BizB1 = O (46)
Since we are considering only flexural buckling = KP55 = KPSS=0 47

Now, substituting Eqns. (41) - (44), noting Eqn.(47), we have;
{KPSSNEE - KPSSNECHRPSSNES - KPSSNECY - {KPSNES - KPSSNECYRPSNFC - KPSSNECY =0 (48)

2(DSS 2(DSS 2(DSS
— [Kl( )N1CCN3CC _ KlDSSKfSSNfCNfC _ KlDSSKfSSNZCCNfC + K4( )NZCCNfC ]_[K1( )NSCCN7CC _
KlDSSKfSSNSCCNSCC _ KlDSSKfSSNGCCNfC + Kf(DSS)NGCCNBCC] =0 (49)
= KEPVINFENES — NEENEC] - KPSSKPSS [NFENES + NEONSE — NENSE — NEENFC ] + KISV NSENEE —
N6CCNSCC] =0 (50)

Substituting the values of KPSS and KP*Sin Egns. 6(a- d) into Eqn.(23), we have::

p42(DSS) cCprcc ccprCcc P34(PSS) ccprcc ccprcc cCprcc ccprcc p? ccprcC ccprcc
wapz05 [N Ns© = Ng“N7°] - s [NrONg© + N°Ng® — Ng©Ng© — Ng“N7“] + ——[N;*Ny® — Ng“Ng©]
(51)
Eqgn.(51) can be further simplified to:
_ 1 _ _
P491DSS CC—EP39555 cCc 4 P293DSS cc = 0 (52)
— P2 (Pzefss—cc_épaé)ss—cc +gbss-ccy = g (53)
Since P? # 0, then, P29Pss—cc —%PHESS'CC + ODSS=CC = 0 or 2P2PSS—CC _ pgbsS=CC 1o ghSs—cC 54 (a-b)
Where
Gfss—cc - CKZ(DSS)[N1CCN3CC _ NSCCN7CC] (55)
6pss=cc = CKPSNLENLE 4 NEENEE — NENEE — NEENEC] (56)
09%5=CC = LINSENEE — NEONGF] 7
(DSS) _ ADbss
ck = 3E2(DSS) (58)
NEC = [12[720 - 3150L +5740 L -5544 [* + 272 [% -840 LS + =2 Lf] (59)
NfFC¢ = [2]1680 - 7560L + 13104 L? - 10080 L3 + 2880L* ] (60)
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NEC = [12 [7920 — 62370 L +210980 L2 -3991680 L3 + 461160 L* - 332640 L5 + L8 -35640 L7 +
3696 L8 ] (61)

NEC = [2[18480 - 166320 L+ 620928 L2 - 1201200 L* + 1267200 L* - 693000 L5 +154000 L°]  (62)
NSCC = [ ZV53900 + 63V53900 L — 162 V53900 L? + “22v/53900 L* - —-°+/53900 L* + 87

V53900 L - 2453900 L° + 22453900 L] (63)

NEE€ =12 [- 24 4/53900  + 171 V53900 L - 432 v/53900 L* + 564 v53900 L® - 360 v/53900 L* + 90
V53900 LS ] (64)

N7CC = 2 2\/53900 + 6353900 L — 16253900 L2 + Z22v/53900 L* - ==v/53900 L* + 87
V53900 L - 2453900 L° +2+/53900 L] (65)

NEE€ = [2 [- 24 V53900  + 171 v/53900 L - 432 v/53900 L2+ 564 V53900 L - 360 V53900 L*+ 90
V53900 LS ] (66)
Where

P or PEs¢ is the critical buckling load for Flexural -DSS-CC-TWC stability analysis
3.3. FIXED- PINNED [C-S]- DSS-TWC STABILITY ANALYSIS FOR FLEXURAL BUCKLING
Eqn. (12) is the TPEF for the Fixed-Pinned [C-S]- DSS- TWC .

Minimization of Eqgn. (12) wrt C; and C, respectively gives Eqn.(67) in matrix form:

Y11 Yi2] (G _ 0
= (67)
V21 Y22l (G 0
Where
45360 196560 349020 325080 167580 45360 5040 45260 226800
}/11 = KIDSS L12 [ - L + L2 _ L3+ L4 - LS L6 ] + KZDSS LZ[ _ L+
133 152 171 190 209 228 57 76
404460 302400 80640 45360 1 453600 1 1496880 1814400 725760 45360
LZ _ 3 4 L4] + 3DS'S [ — _ Z o+ _ L+ LZ ] _ KBSS LZ[ .
95 114 L2 38 L 57 76 95 57
226800 404460 3024—00 80640
L+ 1z - L3+ L] (68)
76 95 114 133
216 10728 39078 58500 44640 18000 3546 252
Yiz = KPS L [-==M; + M,L — M,L? + M, L3 - M,L* + MLt - =Ml + =ML’
216 15768 61254 81324 39978 504—0 216 31536 221832
+ KPS IP[- = > Ma+——MslL - ML2 M L4+—M L6]+1<D55[ 22 M, - M
3 3 3 2L 3 3 3
480384 350352 60480 216 15768 61254 81324 39978
+ MsL — M,L? + M,L3] - KPSS L2[ - Ms+ M;L - M;L?% + M,L3 - M; L* +
5040 5
= M3L ] (69)
216 10728 39078 58500 44640 18000 3546
Yar = KPS LP[-—"Msz+ ——M;L — MsL? + —=M;L? - M,L* + M,L5 - =2 M,L°
252 216 15768 61254 81324 39978 5040
—MsL7 ]+ KPFLP [ =My + M;L- M;L% + M, L3 - M, L* + —M3 L5 ]
216 31536 221832 480384 350352 60480
+K£55 [- =M, M; - M3 + M;L — M;L? + M L3] - KPSSI2 [ Z28M, +
2L 3
15768 61254 81324 39978 504—0
ML — M;L? + M, L3 - M; L* +=5—M; L] (70)
And
y _ KDSS 12[55440 5266800 + 133568820 LZ 406624680 3 501274620 .4 3025915200 5+ 91905660 , ¢
2z 1 1729 1976 2223 2470 2717 2964 3211
13000680 7 + 67914—0 L8 + KDSSLZ[ 55440 . 7817040 + 2869959400 LZ . 830546640 3+ 759722040 4
3458 37 741 988 1235 1482 1729
205682400 16978500 49280 1 15634080 1 1137462480 4979399040 6700700160
U S ——— 18 |+ KPS [— = - —+ - L+ 2
1976 2223 247 L2 494L L 741 988 1235
246188800 27165600 55440 7817040 2869959400 830546640 759722040
. L3 + L4- ] . K4DSSL2 [_ . L + L2 _ 3 4 4
1482 1729 741 988 1235 1482 1729
205682400 16978500
— L®+ L° ] (71)

1976 2223
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Where M; = /% (72)

For the non- trivial solution for C,; and C, , the determinant of stability matrix of Eqn.(67) equals zero.

Vi1 Y12 0
= 7
Y21 Y22 {0} (73)
SOIVing Eqn.(73) yi6|dS. yll yZz = ylz yZl = 0 (74)
Since we are considering only flexural buckling, = KPS5 = KDPSS =0 (75)

Now, substituting Eqns. (68) - (71), noting Eqn.(75), we have;
{KPSNES - KPSNFHEPSNGS - KPSNE} - {KPSNES - KPPNEHKPSNSS -KP*N§} =0 (76)
Where

NCS = [12 [45360 196560, 349020 ;5 325080 ;3 | 167580 ;4 _ 45360 ;5 , 5040
o= - - _ 200 2049

L] 77
133 152 171 190 209 228 247

NZCS - L2[45260_ 226800L + 404460 L2 _3024—00 3 80640 ;4

L3+ L*] (78)
57 76 95 114 133
NES = 12[55440 _ 5266800 4 133568820 .5 406624680 .3 501274620 ;4 _ 3025915200 ;5 = 91905660 ;5 _
3 1729 1976 2223 2470 2717 2964 3211
13000680 679140
7+ L] (79)
3458 3705
55440 7817040 2869959400 830546640 759722040 205682400 16978500
NfS - LZ[ _ L+ 2 _ 3 4 4 _ 5 L6 ] (80)
741 988 1235 1482 1729 1976 2223
216 10728 39078 58500 44640 18000 3546 252
Ng® = L2 [- ="M + ML — MsL? + “=ML? - —=Ml* + —=Malt - ==M3l® + =M;l7]
(81)
216 15768 61254 81324 39978 5040
NES = 12][- - Ms+ ML - M;L? + M, L3- M; L* +=—M L°] (82)
6 3 3 3 3 3
216 10728 39078 58500 44640 18000 3546 252
NES = [2[- —M;+ ML — M;L% + Z=—M, L3 - MsL* + ——=M,L* - =—=M3L° +==M;L7]
(83)
216 15768 61254 81324 39978 5040
N$S = L2[- - Ms+ M;L - M;L? + —M; 13- M, L* +=—M; L°] (84)

Simplifying Eqn.(76) further, we have :

K12(DSS)[N1CSN3c5 _ NSCSN7CS] _ Klnsstss [NfSNfs + NZCSN3€5 _ NSCSNSCS _ N6CSN7CS] + K:(DSS)[NZCSNES _ Nécstcs] —
0 (85)
Substituting the values of KPSS and KP*Sin Egns. 6 (a- d) , we have:

p4 42(DSS) NESNSS — NESNES] - p34(DSS)
1 V3 s V7 16E 12(DSS)

64E2]4(DSS) [

P2
INESNES -+ NESNES — NESNGS — NENES] + T [NESNES — NESNGE]

(86)
Eqn.(86) can be further simplified to:
P4955S_CS —§P395SS_CS + P29§)SS—CS = 0 (87)
— PZ (PZGFSS_CS—%PQgSS_CS +9§)SS—CS ) = 0 (88)

Since P2 0, then, P2pPSS=CS —pgDSS=CS 1 pPSS=CS = ( or 2P2HPSS=CS — POPSS=CS +29P5S=CS =0 89(a-b)

Where
gPSS—Cs = CKZ(DSS)[NICSNSCS_ NESNES (90)
gDSs—Cs = K(DSS)[Ncsts_i_Ncchs NESNES — NESNES | (91)
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— 1
65505 = L[NENE — NENGE] (92)

K« (DSS)

c = Kings constant for DSS cross section defined in Eqn.(25)

Por PL:ES isthe critical buckling load for Flexural -DSS-CS-TWC stability analysis

3.4. NUMERICAL STUDY FOR FLEXURAL [F] - DSS THIN-WALLED COLUMN UNDER DIFFERENT
BOUNDARY CONDITION.

A numerical study was carried out on DSS- Thin- Walled Steel Box Column with the following parameters.

E =210 X 10%, G=81 X 10%, L =4.5m, t varies from 0.0005m , 0.00075m, 0.001m, 0.0025m, 0.005m, 0.0075m, 0.01m,
0.0125m, 0.015m, 0175m to 0.02m, a = 0.08m, where a = column cross section dimension in metres. The main aim is to
compare the present result with the one obtained by Ezeh and Osadebe (2010) using Vlasov method. Note that APSS and
IPSS have been defined in Eqns. (7) and (8) respectively.

Using a well-written coordinated algorithm, the required results for the Flexural [F]- DSS buckling analysis for [S-S], [C-
C] and [C-S] boundary conditions are shown in Table 1. Table 1 shows the comparison of the Flexural buckling loads for
[S-S], [C-C] and [C-S]- DSS thin walled box column between the present study(RRM) and that of Ezeh and Osadede (2010)
using Vlasov method.

Table 1: Comparison Between Rayleigh-Ritz Flexural [F] Buckling Values And Vlasov Flexural [F] Critical
Buckling Values For DSS Thin Walled Box Column Under Different Boundary Condition.

SIN PF Pinned-Pinned [SS] | Fixed-Pinned[C-S] (MN) Fixed-Fixed [C-C]
(MN) (MN)
RRM VLASOV RRM VLASOV RRM VLASOV
t(m) PRESENT | METHOD PRESENT METHOD PRESENT METHOD
STUDY x | EZEH & | STUDY x E-6 EZEH & OSADEDE | STUDY x E-6 EZEH &
E-6 OSADEDE (2010) OSADEDE
(2010) (2010)
1 0.02 3.915 23.673 2.026 47.686 8213.0 90.714
2 0.0175 3.709 20.713 1.743 41.725 7137.8 79.374
3 0.015 3.181 17.754 1.500 35.764 6116.2 68.035
4 0.0125 2.662 14.795 1.240 29.803 5070.1 56.696
5 0.01 2.200 11.836 1.026 23.843 4222.7 45.357
6 0.0075 1.585 8.877 0.740 17.882 3025.5 34.018
7 0.005 1.098 5.918 0.500 11.921 1986.4 22.678
8 0.0025 0.525 2.959 0.250 5.951 1015.5 11.339
9 0.001 0.212 1.184 0.100 2.384 407.5 4.536
10 | 0.00075 0.034 0.888 0.075 1.788 304.8 3.402
11 | 0.0005 0.023 0.592 0.050 1.192 203.6 2.263

4. CONCLUSIONS

So far in this research study, Rayleigh —Ritz Method (RRM) as a classical energy method for resolving structural stability
problems has been presented. The RRM- based formulated DSS TPEF equations derived in the previous works by
Nwachukwu and others (2017) and Nwachukwu and others (2021a) were subjected to stability analysis where stability
matrices were formed with respect to different boundary conditions. Using a well-coordinated algorithm developed in the
course of this work to enable handy solutions to flexural buckling equations, the stability matrices were solved for Flexural
[F1 buckling for the DSS cross sections under Pinned-Pinned [S-S], Fixed-Pinned[C-S] , Fixed-Fixed [C-C] boundary
conditions. The results of the flexural stability analysis (critical buckling loads) of the DSS cross section are as depicted in
Table 1. The results are well suited as design data for DSS TWC designs if all other things remain constant. For Table 1,
the RRM (present study) critical buckling values are compared with the works of Ezeh and Osadebe (2010) with respect to
Pinned-Pinned [S-S], Fixed-Pinned[C-S] , Fixed-Fixed [C-C] boundary conditions for the Flexural buckling load. It can be
envisaged from Table 1 that RRM buckling value increases as the thickness of the TWC increases. That means that there is
a direct relationship between the RRM buckling values and thickness of the TWC. Although, the comparison between the
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methods are not too close, but the ability of the RRM buckling values to make TWC structures stable are guaranteed as
any TWS designed with values little above the critical buckling values will surely satisfy the engineering safety criteria.
Thus, TWC designers should be encouraged to use estimated values that are a little bit greater than P for the selection of
suitable profile as well as structural design of the TWC to ensure proper safety of the structure.
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